C++ 中的 1 和 0

c++server side programmingprogramming

假设我们有一个分别由 m 个 0 和 n 个 1 组成的支配符。另一方面,有一个包含二进制字符串的数组。现在我们的任务是找出用给定的 m 个 0 和 n 个 1 可以生成的字符串的最大数量。每个 0 和 1 最多只能使用一次。因此,如果输入为 Array = [“10”, “0001”, “111001”, “1”, “0”,],m = 5,n = 3,则输出为 4。这是因为使用 5 个 0 和 3 个 1 可以组成 4 个字符串,分别为 “10”, ”0001”, ”1”, ”0”。

为了解决这个问题,我们将遵循以下步骤 −

  • 创建一个大小为 (m + 1) x (n + 1) 的矩阵
  • ret := 0
  • for i in range 0 to size of strs数组
    • one := 0, zero := 0
    • j 在 0 到 strs[i] 的大小范围内
      • 当 star[i, j] 为 1 时加 1,为 0 时加 0
    • j 在 m 到 0 的范围内
      • j 在 n 到 1 的范围内
        • dp[j,k] := dp[j,k] 和 1 的最大值 + dp[j - zero, k - one]
        • ret := ret 和 dp[j,k] 的最大值
  • return ret

让我们看看下面的实现以便更好地理解 −

示例

#include <bits/stdc++.h>
using namespace std;
class Solution {
   public:
   int findMaxForm(vector<string>& strs, int m, int n) {
      vector < vector <int> > dp(m + 1, vector <int>(n + 1));
      int ret = 0;
      for(int i = 0; i < strs.size(); i++){
         int one = 0;
         int zero = 0;
         for(int j = 0; j < strs[i].size(); j++){
            one += strs[i][j] == '1';
            zero += strs[i][j] == '0';
         }
         for(int j = m; j>= zero; j--){
            for(int k = n; k >= one; k--){
               dp[j][k] = max(dp[j][k], 1 + dp[j - zero][k - one]);
                  ret = max(ret, dp[j][k]);
            }
         }
      }
      return ret;
   }
};
main(){
   vector<string> v = {"10","0001","111001","1","0"};
   Solution ob;
   cout << (ob.findMaxForm(v, 5, 3));
}

输入

["10","0001","111001","1","0"]
5
3

输出

4

相关文章